メインコンテンツまでスキップ

Parametric circuit

Quantum circuits with variable parameters play an important role in some quantum algorithms, especially variational algorithms. QURI Parts treats such circuits in a special way so that such algorithms can be efficiently performed. In QURI Parts, we provide 2 types of parametric ciricuits. For either type of circuits, the parametric gates are all Pauli rotation gates, but they hold the parameters in different ways. They are

  • UnboundParametricQuantumCircuit
  • LinearMappedUnboundParametricQuantumCircuit

In this tutorial, we clearly distinguish two types of parameters: circuit parameter and gate parameter. Circuit parameters refer to independent parameters the circuit holds. Gate parameters refer to the parameter each parametric gate in the circuit hold. Depending on type of the circuit, the gate parameters have different relations with the circuit parameters. In the case of UnboundParametricQuantumCircuit, gate parameters are trivial mapped as circuit parameters, i.e. they are the same. In the case of LinearMappedUnboundParametricQuantumCircuit, circuit parameters are linearly mapped to gate parameters, so it is generally possible that the number of gate parameters are different from the number of circuit parameters. We will make this clearer with concrete formulae and examples in later sections.

Prerequisite

QURI Parts modules used in this tutorial: quri-parts-circuit, quri-parts-core and quri-parts-qulacs. You can install them as follows:

# !pip install "quri-parts[qulacs]"

Parameter objects

An unbound parameter in a parametric circuit is represented by a quri_parts.circuit.Parameter class. A Parameter object works as a placeholder for the parameter and does not hold any specific value. Identity of a Parameter object is determined by identity of it as a Python object. Even if two Parameter objects have the same name, they are treated as different parameters:

from quri_parts.circuit import Parameter, CONST

phi = Parameter("phi")
psi1 = Parameter("psi")
psi2 = Parameter("psi2")

# CONST is a pre-defined parameter that represents a constant.
print(phi, psi1, psi2, CONST)
print("phi == psi1:", phi == psi1)
print("psi1 == psi2:", psi1 == psi2)
print("phi == CONST:", phi == CONST)

print("")
print("Parameters are treated as different even if they have the same name")
print(" Parameter('phi') == Parameter('phi'):", Parameter("phi") == Parameter("phi"))
#output
Parameter(name=phi) Parameter(name=psi) Parameter(name=psi2) Parameter(name=)
phi == psi1: False
psi1 == psi2: False
phi == CONST: False

Parameters are treated as different even if they have the same name
Parameter('phi') == Parameter('phi'): False

Parametric gates

The parametric gates are represented by the ParametricQuantumGate object. It is an object containing only the attributes:

  • name: name of the parametric gate.
  • target_indices: the qubit it acts on.
  • control_indices: the qubit that controls the gate on the target qubit.
  • pauli_ids: The sequence of Pauli matrix labels that represents the label of the Pauli rotation gates.

Like the QuantumGate object, it is not to be constructed directly. In QURI Parts, we provide 4 factory functions for creating ParametricQuantumGates. They are Pauli rotation gates with no concrete value of rotation angle bound to it.

from quri_parts.circuit import ParametricRX, ParametricRY, ParametricRZ, ParametricPauliRotation

print(ParametricRX(target_index=0))
print(ParametricRY(target_index=0))
print(ParametricRZ(target_index=0))
print(ParametricPauliRotation(target_indics=(0, 1, 2, 3), pauli_ids=(3, 2, 1, 2)))
#output
ParametricQuantumGate(name='ParametricRX', target_indices=(0,), control_indices=(), pauli_ids=())
ParametricQuantumGate(name='ParametricRY', target_indices=(0,), control_indices=(), pauli_ids=())
ParametricQuantumGate(name='ParametricRZ', target_indices=(0,), control_indices=(), pauli_ids=())
ParametricQuantumGate(name='ParametricPauliRotation', target_indices=(0, 1, 2, 3), control_indices=(), pauli_ids=(3, 2, 1, 2))

UnboundParametricQuantumCircuit

An unbound parametric circuit where each parametric gate in it has its own parameter independent from other parameters. The gates can only depend on a parameter θ\theta via:

exp(iθ2P)\begin{equation} \exp\left(- i \frac{\theta}{2} P\right) \end{equation}

where PP is any Pauli string. In addition to parametric gates, you can also add all the non-parametric gates supported by the usual QuantumCircuit object to a parametric circuit. As an example, let's create a circuit with gates: [H0,CNOT0,1,RX(θ)0,RY(ϕ)0,RZ(ψ)1][\text{H}_0, \text{CNOT}_{0,1}, \text{RX}(\theta)_0, \text{RY}(\phi)_0, \text{RZ}(\psi)_1]. Here, RX(θ)\text{RX}(\theta), RY(ϕ)\text{RY}(\phi) and RZ(ψ)\text{RZ}(\psi) are rotation gates with parameters independent of each other.

from quri_parts.circuit import UnboundParametricQuantumCircuit
from quri_parts.circuit.utils.circuit_drawer import draw_circuit

parametric_circuit = UnboundParametricQuantumCircuit(2)
parametric_circuit.add_H_gate(0)
parametric_circuit.add_CNOT_gate(0, 1)
p_theta = parametric_circuit.add_ParametricRX_gate(0)
p_phi = parametric_circuit.add_ParametricRY_gate(0)
p_psi = parametric_circuit.add_ParametricRZ_gate(1)

draw_circuit(parametric_circuit)
#output
___ ___ ___
| H | |PRX| |PRY|
0 --|0 |-----●-----|2 |---|3 |-
|___| | |___| |___|
_|_ ___
|CX | |PRZ|
1 ----------|1 |---|4 |---------
|___| |___|

We may check whether or not we have 3 independent parameters added to to circuit and assign values to them. As an example, we assign θ=0.1\theta = 0.1, ϕ=0.2\phi = 0.2, ψ=0.3\psi = 0.3 to the parameters.

print("Number of parameters in the circuit:", parametric_circuit.parameter_count)

# bind parameters:
print("")
print("Bind parameters:")
parametric_circuit.bind_parameters([0.1, 0.2, 0.3]).gates
#output
Number of parameters in the circuit: 3

Bind parameters:

(QuantumGate(name='H', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='CNOT', target_indices=(1,), control_indices=(0,), controlled_on=(1,), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='RX', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(0.1,), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='RY', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(0.2,), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='RZ', target_indices=(1,), control_indices=(), controlled_on=(), classical_indices=(), params=(0.3,), pauli_ids=(), unitary_matrix=()))

Looking at the gates, we indeed get the desired circuit with the rotation gates being RX(θ=0.1)0,  RY(ϕ=0.2)0,  RZ(ψ=0.3)1.\text{RX}(\theta=0.1)_0,\; \text{RY}(\phi=0.2)_0,\; \text{RZ}(\psi=0.3)_1.

parametric_circuit.gates
#output

[QuantumGate(name='H', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='CNOT', target_indices=(1,), control_indices=(0,), controlled_on=(1,), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
ParametricQuantumGate(name='ParametricRX', target_indices=(0,), control_indices=(), pauli_ids=()),
ParametricQuantumGate(name='ParametricRY', target_indices=(0,), control_indices=(), pauli_ids=()),
ParametricQuantumGate(name='ParametricRZ', target_indices=(1,), control_indices=(), pauli_ids=())]

Properties

We provide various properties for UnboundParametricQuantumCircuit.

qubit_count:

Number of qubits of the circuit

print("qubit_count:", parametric_circuit.qubit_count)
#output
qubit_count: 2

depth:

Depth of the parametric circuit

print("Circuit depth:", parametric_circuit.depth)
#output
Circuit depth: 4

parameter_count:

Number of circuit parameters.

print("Parameter count:", parametric_circuit.parameter_count)
#output
Parameter count: 3

gates:

All the non-parametric and parametric gates.

print("Gates:")
parametric_circuit.gates
#output
Gates:

[QuantumGate(name='H', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='CNOT', target_indices=(1,), control_indices=(0,), controlled_on=(1,), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
ParametricQuantumGate(name='ParametricRX', target_indices=(0,), control_indices=(), pauli_ids=()),
ParametricQuantumGate(name='ParametricRY', target_indices=(0,), control_indices=(), pauli_ids=()),
ParametricQuantumGate(name='ParametricRZ', target_indices=(1,), control_indices=(), pauli_ids=())]

gates_and_params:

All the non-parametric and parametric gates and the associated circuit parameters. If the gate is non-parametric, the associated parameter would be None.

print("Gates and parameters:")
parametric_circuit.gates_and_params
#output
Gates and parameters:

((QuantumGate(name='H', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
None),
(QuantumGate(name='CNOT', target_indices=(1,), control_indices=(0,), controlled_on=(1,), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
None),
(ParametricQuantumGate(name='ParametricRX', target_indices=(0,), control_indices=(), pauli_ids=()),
Parameter(name=)),
(ParametricQuantumGate(name='ParametricRY', target_indices=(0,), control_indices=(), pauli_ids=()),
Parameter(name=)),
(ParametricQuantumGate(name='ParametricRZ', target_indices=(1,), control_indices=(), pauli_ids=()),
Parameter(name=)))

Mutability

An UnboundParametricQuantumCircuit is a mutable object where we may freely add gates to. In the case where you want to freeze the parametric circuit like you freeze a QuantumCircuit, you may use the freeze method to create a new ImmutableUnboundParametricQuantumCircuit where in-place gate additions are disabled.

frozen_parametric_circuit = parametric_circuit.freeze()

Note that if you freeze the frozen circuit again, you get the same frozen circuit back.

(frozen_parametric_circuit, frozen_parametric_circuit.freeze())
#output
(<quri_parts.circuit.circuit_parametric.ImmutableUnboundParametricQuantumCircuit at 0x10a8bbeb0>,
<quri_parts.circuit.circuit_parametric.ImmutableUnboundParametricQuantumCircuit at 0x10a8bbeb0>)

In the case where you want to unfreeze the circuit, you may use the get_mutable_copy method.

frozen_parametric_circuit.get_mutable_copy()
#output
<quri_parts.circuit.circuit_parametric.UnboundParametricQuantumCircuit at 0x105741f40>

Mutibality of bound circuit

When we bind the parametric circuit with concrete values, we obtain an ImmutableBoundParametricQuantumCircuit. It is an immutable circuit that holds the original parametric circuit and the bound parameters. The parametric circuit held inside it is immutable.

bound_circuit = parametric_circuit.bind_parameters([0.1, 0.2, 0.3])

print("parameter map:")
print(bound_circuit.parameter_map)

print("")
print("unbound circuit:")
print(bound_circuit.unbound_param_circuit)
#output
parameter map:
{Parameter(name=): 0.1, Parameter(name=): 0.2, Parameter(name=): 0.3}

unbound circuit:
<quri_parts.circuit.circuit_parametric.ImmutableUnboundParametricQuantumCircuit object at 0x10c5e7cd0>

Parameter mapping

Parametric circuits carry LinearParameterMapping objects, which denotes how circuit parameters are mapped to gate parameters. In the case of UnboundParametricQuantumCircuit, there is no difference between circuit and gate parameters. We may show this with the has_trivial_parameter_mapping property.

parametric_circuit.has_trivial_parameter_mapping
#output
True

Then, let's introduce the LinearParameterMapping object stored inside an UnboundParametricQuantumCircuit. It can be retrieved by the .param_mapping property.

trivial_mapping = parametric_circuit.param_mapping

We may retrieve the circuit parameters with the in_params property of the LinearParameterMapping object. Note that when we use the .add_Parametric{}_gate() method while constructing the circuit, we obtain a Parameter object. In our example circuit above, they are stored inside the p_theta, p_phi, p_psi variable. We may show that they are the same as the ones retrieved from .in_params.

(
p_theta == parametric_circuit.param_mapping.in_params[0],
p_phi == parametric_circuit.param_mapping.in_params[1],
p_psi == parametric_circuit.param_mapping.in_params[2],
)
#output
(True, True, True)

The gate parameters are represented by LinearParameterMapping.out_params. As there is no distinction between the circuit and gate parameters for UnboundParametricQuantumCircuits, we may check that the p_theta, p_phi, p_psi are the same as .out_params.

(
p_theta == parametric_circuit.param_mapping.out_params[0],
p_phi == parametric_circuit.param_mapping.out_params[1],
p_psi == parametric_circuit.param_mapping.out_params[2]
)
#output
(True, True, True)

LinearMappedUnboundParametricQuantumCircuit

An unbound parametric circuit holding a set of independent circuit parameters {θi}\{\theta_i\}. Different parametric gates generally hold these circuit parameters in the form of different linear functions in the exponent. To be more explicit, a linear mapped parametric gate can look like:

exp[i2(iaiθi+b)P]\begin{equation} \exp\left[- \frac{i}{2} \left(\sum_i a_i \theta_i + b\right) P\right] \end{equation}

where aia_i and bb are coefficients set by the user. Let's have a quick look at how to construct these circuits. Now, let's create a LinearMappedUnboundParametricQuantumCircuit with 2 circuit parameters. θ\theta and ϕ\phi. Now, we implement a circuit that depends on the circuit parameters via [H0,CNOT0,1,RX(θ/2+ϕ/3+π/2)0,RY(θ/2+ϕ/3)0,RZ(θ/3ϕ/2π/2)1][\text{H}_0, \text{CNOT}_{0, 1}, \text{RX}(\theta/2 + \phi/3 + \pi/2)_0, \text{RY}(-\theta/2 + \phi/3)_0, \text{RZ}(\theta/3 - \phi/2 - \pi/2)_1].

import numpy as np
from quri_parts.circuit import LinearMappedUnboundParametricQuantumCircuit, CONST

linear_param_circuit = LinearMappedUnboundParametricQuantumCircuit(2)
theta, phi = linear_param_circuit.add_parameters("theta", "phi")

linear_param_circuit.add_H_gate(0)
linear_param_circuit.add_CNOT_gate(0, 1)
linear_param_circuit.add_ParametricRX_gate(0, {theta: 1/2, phi: 1/3, CONST: np.pi/2})
linear_param_circuit.add_ParametricRY_gate(0, {theta: -1/2, phi: 1/3})
linear_param_circuit.add_ParametricRZ_gate(1, {theta: 1/3, phi: -1/2, CONST: -np.pi/2})

draw_circuit(linear_param_circuit)
#output
___ ___ ___
| H | |PRX| |PRY|
0 --|0 |-----●-----|2 |---|3 |-
|___| | |___| |___|
_|_ ___
|CX | |PRZ|
1 ----------|1 |---|4 |---------
|___| |___|

In the case of LinearMappedUnboundParametricQuantumCircuit, we need to use the add_parameter or add_parameters methods to assign single or multiple parameters to the circuit. Then, we pass the linear function of the parameters to the .add_Parametric{}_gate in the form of a dictionary, whose key is the parameter and value is the corresponding coefficient. Here quri_parts.circuit.CONST represents the constant term of a linear function

print("Number of parameters in the circuit:", linear_param_circuit.parameter_count)

# bind parameters:
print("")
print("Bind parameters:")
linear_param_circuit.bind_parameters([0.1, 0.2]).gates
#output
Number of parameters in the circuit: 2

Bind parameters:

(QuantumGate(name='H', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='CNOT', target_indices=(1,), control_indices=(0,), controlled_on=(1,), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='RX', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(1.6874629934615633,), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='RY', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(0.016666666666666663,), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='RZ', target_indices=(1,), control_indices=(), controlled_on=(), classical_indices=(), params=(-1.6374629934615632,), pauli_ids=(), unitary_matrix=()))

Finally, it is worth mentioning that we can make the gate parameters become independent of each other, i.e. converting a LinearMappedUnboundParametricQuantumCircuit to an ImmutableUnboundParametricQuantumCircuit. This is done by the .primitive_circuit method.

primitive_circuit = linear_param_circuit.primitive_circuit()
print(primitive_circuit)
print("primitive_circuit is trivially mapped:", primitive_circuit.has_trivial_parameter_mapping)
#output
<quri_parts.circuit.circuit_parametric.ImmutableUnboundParametricQuantumCircuit object at 0x10df56460>
primitive_circuit is trivially mapped: True

Properties

We provide various properties for LinearMappedUnboundParametricQuantumCircuit. They are basically the same as those provided by an UnboundParametricQuantumCircuit, except that gates_and_params is not provided for LinearMappedUnboundParametricQuantumCircuit.

qubit_count:

Number of qubits of the circuit

print("qubit_count:", linear_param_circuit.qubit_count)
#output
qubit_count: 2

depth:

Depth of the parametric circuit

print("Circuit depth:", linear_param_circuit.depth)
#output
Circuit depth: 4

parameter_count:

Number of circuit parameters.

print("Parameter count:", linear_param_circuit.parameter_count)
#output
Parameter count: 2

gates:

All the non-parametric and parametric gates.

print("Gates:")
linear_param_circuit.gates
#output
Gates:

[QuantumGate(name='H', target_indices=(0,), control_indices=(), controlled_on=(), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
QuantumGate(name='CNOT', target_indices=(1,), control_indices=(0,), controlled_on=(1,), classical_indices=(), params=(), pauli_ids=(), unitary_matrix=()),
ParametricQuantumGate(name='ParametricRX', target_indices=(0,), control_indices=(), pauli_ids=()),
ParametricQuantumGate(name='ParametricRY', target_indices=(0,), control_indices=(), pauli_ids=()),
ParametricQuantumGate(name='ParametricRZ', target_indices=(1,), control_indices=(), pauli_ids=())]

Mutability

An LinearMappedUnboundParametricQuantumCircuit is a mutable object where we may freely add gates to. In the case where you want to freeze the parametric circuit like you freeze a QuantumCircuit, you may use the freeze method to create a new ImmutableLinearMappedUnboundParametricQuantumCircuit where in-place gate additions are disabled.

frozen_linear_circuit = linear_param_circuit.freeze()

Note that if you freeze the frozen circuit again, you get the same frozen circuit back.

(frozen_linear_circuit, frozen_linear_circuit.freeze())
#output
(<quri_parts.circuit.circuit_linear_mapped.ImmutableLinearMappedUnboundParametricQuantumCircuit at 0x10df56490>,
<quri_parts.circuit.circuit_linear_mapped.ImmutableLinearMappedUnboundParametricQuantumCircuit at 0x10df56490>)

In the case where you want to unfreeze the circuit, you may use the get_mutable_copy method.

frozen_linear_circuit.get_mutable_copy()
#output
<quri_parts.circuit.circuit_linear_mapped.LinearMappedUnboundParametricQuantumCircuit at 0x10df56580>

Mutability of bound circuit

When we bind the parametric circuit with concrete values, we obtain an ImmutableBoundParametricQuantumCircuit. It is an immutable circuit that holds the original parametric circuit and the bound parameters. The parametric circuit held inside it is immutable. In the case of binding parameters to a linear mapped circuit, the unbound circuit held inside the returned ImmutableBoundParametricQuantumCircuit is an ImmutableUnboundParametricQuantumCircuit where the parameter mapping is trivial.

bound_linear_circuit = linear_param_circuit.bind_parameters([0.1, 0.2])

print("Parameter map:")
print(bound_linear_circuit.parameter_map)

print("")
print("Unbound circuit:")
print(bound_linear_circuit.unbound_param_circuit)
print("Mapping is trivial:", bound_linear_circuit.unbound_param_circuit.has_trivial_parameter_mapping)
#output
Parameter map:
{Parameter(name=): 1.6874629934615633, Parameter(name=): 0.016666666666666663, Parameter(name=): -1.6374629934615632}

Unbound circuit:
<quri_parts.circuit.circuit_parametric.ImmutableUnboundParametricQuantumCircuit object at 0x10df588e0>
Mapping is trivial: True

Parameter mapping

Now, let's look at the parameter mapping of a LinearMappedUnboundParametricQuantumCircuit. As the circuit parameters are mapped to the gate parameters linearly, the has_trivial_parameter_mapping property should be False.

print(
"Parameter mapping of LinearMappedUnboundParametricQuantumCircuit is trivial:",
linear_param_circuit.has_trivial_parameter_mapping
)
#output
Parameter mapping of LinearMappedUnboundParametricQuantumCircuit is trivial: False

The parameter mapping can be retrieved by the param_mapping property. It returns a LinearParameterMapping object. Starting from here, we introduce LinearParameterMapping in detail.

linear_param_mapping = linear_param_circuit.param_mapping

In the LinearMappedUnboundParametricQuantumCircuit we created above, there are 2 independent circuit parameters θ\theta and ϕ\phi. They can be accessed by the in_params property.

linear_param_mapping.in_params
#output
(Parameter(name=theta), Parameter(name=phi))

As there are 3 parameteric gates that depends on (θ,ϕ)(\theta, \phi), there are 3 gate parameters Φ0\Phi_0, Φ1\Phi_1 and Φ2\Phi_2. They can be accessed by the out_params property. They are represented by 3 distinct Parameters with no names assigned to them.

linear_param_mapping.out_params
#output
(Parameter(name=), Parameter(name=), Parameter(name=))

The circuit parameters are mapped to the gate parameters via:

Φ0=θ2+ϕ3+π2,Φ1=θ2+ϕ3,Φ2=θ3ϕ2π2, \begin{align} \Phi_0 &= \frac{\theta}{2} + \frac{\phi}{3} + \frac{\pi}{2}, \nonumber \\ \Phi_1 &= -\frac{\theta}{2} + \frac{\phi}{3}, \\ \Phi_2 &= \frac{\theta}{3} - \frac{\phi}{2} - \frac{\pi}{2}, \nonumber\\ \end{align}

where the linear function can be accessed with the mapping property.

linear_param_mapping.mapping
#output
{Parameter(name=): mappingproxy({Parameter(name=theta): 0.5,
Parameter(name=phi): 0.3333333333333333,
Parameter(name=): 1.5707963267948966}),
Parameter(name=): mappingproxy({Parameter(name=theta): -0.5,
Parameter(name=phi): 0.3333333333333333}),
Parameter(name=): mappingproxy({Parameter(name=theta): 0.3333333333333333,
Parameter(name=phi): -0.5,
Parameter(name=): -1.5707963267948966})}

We also provide mappers that helps you compute the value of the gate parameters for specified values of circuit parameters. For example, suppose we want to compute gate parameters:

{Φ0(θ=0.8,ϕ=0.7),Φ1(θ=0.8,ϕ=0.7),Φ2(θ=0.8,ϕ=0.7)}\begin{equation} \{\Phi_0(\theta=0.8, \phi=0.7), \Phi_1(\theta=0.8, \phi=0.7), \Phi_2(\theta=0.8, \phi=0.7)\} \nonumber \end{equation}

we may write:

linear_param_mapping.mapper({theta: 0.8, phi: 0.7})
#output
{Parameter(name=): 2.20412966012823,
Parameter(name=): -0.1666666666666667,
Parameter(name=): -1.6541296601282298}

Finally, we introduce how to compute the derivatives of the gate parameters with respect to the circuit paramters, i.e.

{Φ0θ,Φ1θ,Φ2θ}{Φ0ϕ,Φ1ϕ,Φ2ϕ} \begin{equation} \begin{split} \left\lbrace\frac{\partial \Phi_0}{\partial \theta}, \frac{\partial \Phi_1}{\partial \theta}, \frac{\partial \Phi_2}{\partial \theta}\right\rbrace \\ \left\lbrace\frac{\partial \Phi_0}{\partial \phi}, \frac{\partial \Phi_1}{\partial \phi}, \frac{\partial \Phi_2}{\partial \phi}\right\rbrace \end{split} \end{equation}

This can be done with the get_derivatives method.

for p, d in zip(("θ", "φ"), linear_param_mapping.get_derivatives()):
print(f"Gate parameters' derivatives with respect to {p}: {d.seq_mapper([0.8, 0.7])}")
#output
Gate parameters' derivatives with respect to θ: (0.5, -0.5, 0.3333333333333333)
Gate parameters' derivatives with respect to φ: (0.3333333333333333, 0.3333333333333333, -0.5)